Sparsifying preconditioner for soliton calculations

نویسندگان

  • Jianfeng Lu
  • Lexing Ying
چکیده

We develop a robust and efficient method for soliton calculations for nonlinear Schrödinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton’s iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsifying Preconditioner for Pseudospectral Approximations of Indefinite Systems on Periodic Structures

This paper introduces the sparsifying preconditioner for the pseudospectral approximation of highly indefinite systems on periodic structures, which include the frequency-domain response problems of the Helmholtz equation and the Schrödinger equation as examples. This approach transforms the dense system of the pseudospectral discretization approximately into a sparse system via an equivalent i...

متن کامل

Sparsify and sweep: an efficient preconditioner for the Lippmann-Schwinger equation

This paper presents an efficient preconditioner for the Lippmann-Schwinger equation that combines the ideas of the sparsifying and the sweeping preconditioners. Following first the idea of the sparsifying preconditioner, this new preconditioner starts by transforming the dense linear system of the Lippmann-Schwinger equation into a nearly sparse system. The key novelty is a newly designed perfe...

متن کامل

Fast Alternating BiDirectional Preconditioner for the 2D High-Frequency Lippmann-Schwinger Equation

This paper presents a fast iterative solver for Lippmann-Schwinger equation for highfrequency waves scattered by a smooth medium with a compactly supported inhomogeneity. The solver is based on the sparsifying preconditioner [63] and a domain decomposition approach similar to the method of polarized traces [64]. The iterative solver has two levels, the outer level in which a sparsifying precond...

متن کامل

Sparsifying Preconditioner for the Lippmann-Schwinger Equation

The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...

متن کامل

Preconditioning Orbital Minimization Method for Planewave Discretization

We present an efficient preconditioner for the orbital minimization method when the Hamiltonian is discretized using planewaves (i.e., pseudospectral method). This novel preconditioner is based on an approximate Fermi operator projection by pole expansion, combined with the sparsifying preconditioner to efficiently evaluate the pole expansion for a wide range of Hamiltonian operators. Numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 315  شماره 

صفحات  -

تاریخ انتشار 2016